Respiratory properties of blood in the harbor porpoise, Phocoena phocoena.

نویسندگان

  • Lisette B Soegaard
  • Marie N Hansen
  • Cornelis van Elk
  • Jesper Brahm
  • Frank B Jensen
چکیده

Harbor porpoises are active divers that exchange O(2) and CO(2) with the environment during a fast single breath upon surfacing. We investigated blood O(2)-transporting properties, buffer characteristics, Cl(-) transport via the erythrocyte anion exchanger (AE1), circulating nitric oxide metabolites and hemoglobin nitrite reduction in harbor porpoises with the aim to evaluate traits that are adaptive for diving behavior. Blood O(2) affinity was higher in harbor porpoises than in similar sized terrestrial mammals, as supported by our parallel recordings of O(2) equilibria in sheep and pig blood. Further, O(2) affinity tended to increase with increasing body mass. A high O(2) affinity favors O(2) extraction from the lungs, but a normal Bohr effect (ΔlogP(50)/ΔpH=-0.46) gradually lowers O(2) affinity during dives (where CO(2) accumulates) to assist O(2) off-loading to perfused tissues. The true plasma non-bicarbonate buffer value was moderately higher than in terrestrial mammals and increased upon deoxygenation. Plasma bicarbonate was also relatively high, contributing to increase the overall buffer capacity. The apparent Cl(-) permeability of harbor porpoise erythrocytes was similar to the human value at 37°C, showing absence of a comparative increase in the velocity of erythrocyte HCO(-)(3)/Cl(-) exchange to aid CO(2) excretion. The Q(10) for AE1-mediated Cl(-) transport in harbor porpoises was lower than in humans and seemed to match the Q(10) for metabolism (Q(10)≈2). Plasma nitrite, plasma nitrate and hemoglobin-mediated nitrite reduction were elevated compared with mammalian standards, suggesting that increased nitric oxide bioavailability and nitrite-derived nitric oxide could play important roles in diving physiology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brucella ceti Infection in Harbor Porpoise (Phocoena phocoena)

We describe Brucella sp. infection and associated lesions in a harbor porpoise (Phocoena phocoena) found on the coast of Belgium. The infection was diagnosed by immunohistochemistry, transmission electron microscopy, and bacteriology, and the organism was identified as B. ceti. The infection's location in the porpoise raises questions of abortion and zoonotic risks.

متن کامل

Bartonella henselae in Porpoise Blood

We report detection of Bartonella henselae DNA in blood samples from 2 harbor porpoises (Phocoena phocoena). By using real-time polymerase chain reaction, we directly amplified Bartonella species DNA from blood of a harbor porpoise stranded along the northern North Carolina coast and from a pre-enrichment blood culture from a second harbor porpoise. The second porpoise was captured out of habit...

متن کامل

Harbor Porpoise and Fisheries: an Uncertainty Analysis of Incidental Mortality

The harbor porpoise (Phocoena phocoena) in the western North Atlantic is subject to mortality due to entanglement in gillnets. Such incidental mortality threatens a population if it is too large relative to the potential population growth rate. Critical values for incidental mortality have been established by the International Whaling Commission and the U.S. Marine Mammal Protection Act. As in ...

متن کامل

HARBOR PORPOISE (Phocoena phocoena): Washington Inland Waters Stock

Figure 1. Approximate distribution of harbor porpoise in the U.S. Pacific Northwest (shaded area). Stock boundaries separating the stocks are shown. STOCK DEFINITION AND GEOGRAPHIC RANGE In the eastern North Pacific Ocean, the harbor porpoise ranges from Point Barrow, along the Alaskan coast, and down the west coast of North America to Point Conception, California (Gaskin 1984). Harbor porpoise...

متن کامل

Functional morphology of the nasal complex in the harbor porpoise (Phocoena phocoena l.).

Toothed whales (Odontoceti, Cetacea) are the only aquatic mammals known to echolocate, and probably all of them are able to produce click sounds and to synthesize their echoes into a three-dimensional "acoustic image" of their environment. In contrast to other mammals, toothed whales generate their vocalizations (i.e., echolocation clicks) by a pneumatically-driven process in their nasal comple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 215 Pt 11  شماره 

صفحات  -

تاریخ انتشار 2012